

First ADS analysis of B→D⁰K⁻ decays in hadron collisions

Paola Garosi

(University of Siena & INFN Pisa) for the CDF collaboration

BEAUTY 2011

13th International Conference on B-Physics at Hadron Machines

Amsterdam, April 04th-08th 2011

Motivation: CKM γ angle measurement

2

CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

CP violation if $\eta \neq 0$

b → u transition B meson system

 γ is the least well-known angle of the CKM triangle nowadays

Can probe New Physics

(select $\rho-\eta$ values valid in most of the NP extensions)

Improving the resolution can lead to:

- consistency with SM prediction

Motivation: CKM γ angle measurement

CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

CP violation if $\eta \neq 0$

b → u transition B meson system

 γ is the least well-known angle of the CKM triangle nowadays

Can probe New Physics

(select $\rho-\eta$ values valid in most of the NP extensions)

Improving the resolution can lead to:

- NP scenario

CKM γ angle through B \rightarrow DK decays

Use of B \rightarrow DK decays is the cleanest way to measure γ :

- tree-level amplitude only
- tiny theoretical uncertanties

 γ can be extracted exploiting the interference between the processes $b \to c\bar{u}s$ (B⁻ $\to D^0$ K⁻) and $b \to u\bar{c}s$ (B⁻ $\to \bar{D}^0$ K⁻), when D^0 and \bar{D}^0 decay to the same final state

Favored b \rightarrow c transition $A_1 \sim V_{cb}V_{us}^* \sim \lambda^3$ Color suppressed b \rightarrow u transition $A_2 \sim V_{ub}V_{cs}^* \sim \lambda^3 r_B e^{-i\delta B} e^{-i\gamma}$

Current situation for the γ angle

measurement using $B^- \rightarrow D^0 K^-$

Still large statistical uncertainty

- <u>GGSZ (Giri-Grossmann-Soffer-Zupan) method</u> ([PRL78,3257, PRD68,054018]) that uses the B[±] \rightarrow D K[±] decays with the D⁰ and \overline{D}^0 reconstructed into three-body final state. For example the D⁰ \rightarrow K⁰_s π^+ π^-
- <u>GLW (Gronau-London-Wyler) method</u> ([PLB253,483 PLB265,172]) that uses the B[±] \rightarrow D K[±] decays with D_{CP} decay modes. D_{CP+} \rightarrow π^+ π^- , K⁺ K⁻ and D_{CP-} \rightarrow K⁰_s π^0 , K⁰_s ω , K⁰_s ϕ .
- <u>ADS (Atwood-Dunietz-Soni) method</u> ([PRL78,3257;PRD63,036005]) that uses the B[±] \rightarrow D K[±] decays with D reconstructed in the doubly Cabibbo suppressed $D^0_{DCS} \rightarrow K^+ \pi^-$

ADS method

ADS Observables

Direct CP violation in B \rightarrow D_{DCS}K modes

- expected large CP asymmetry
- decay suppressed by a factor of ~10-3 wrt favored
- results have to be combined with other methods to obtain γ measurement

ADS Observables

Direct CP violation in $B \rightarrow D_{DCS}K$ modes

- expected large CP asymmetry
- decay suppressed by a factor of ~10-3 wrt favored
- results have to be combined with other methods to obtain $\boldsymbol{\gamma}$ measurement

Observables

$$R_{ADS}(h) = \frac{N(B^- \to D_{DCS}^0 h^-) + N(B^+ \to D_{DCS}^0 h^+)}{N(B^- \to D_{CF}^0 h^-) + N(B^+ \to D_{CF}^0 h^+)}$$

$$\mathcal{A}_{ADS}(h) = \frac{N(B^- \to D_{DCS}^0 h^-) - N(B^+ \to D_{DCS}^0 h^+)}{N(B^- \to D_{DCS}^0 h^-) + N(B^+ \to D_{DCS}^0 h^+)}$$

$$R_{ADS}(K) = r_D^2 + r_B^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos\gamma$$

$$A_{ADS}(K) = 2r_B r_D \sin(\delta_B + \delta_D) \sin\gamma / R_{ADS}(K)$$

h = K or
$$\pi$$

 $D^0_{CF} \rightarrow K^-\pi^+$, $D^0_{DCS} \rightarrow K^+\pi^-$

B→DK at b-factories

BaBar ADS result (467M BB)

(arXiv:1006.4241, accepted by Phys. Rev. D (September 2010))

 $B \rightarrow D_{DCS} K$ reconstruction

 $A_{DK} = -0.86 \pm 0.47 ^{+0.12}_{-0.16}$

with a significance of $\sim 2\sigma$

~ 20 B \rightarrow D_{DCS}K events,

~ 80 B \rightarrow D_{DCS} π events

$$\mathcal{R}_{D\pi} = (3.3 \pm 0.6 \pm 0.4) \times 10^{-3}$$

 $\mathcal{A}_{D\pi} = 0.03 \pm 0.17 \pm 0.04$

B→DK at b-factories

Belle ADS result (772M $B\overline{B}$)

(arXiv:1103.5951v1, submitted to PRL (March 2011))

$B \rightarrow D_{DCS}\pi$ reconstruction

~ 165 B \rightarrow D_{DCS} π events

$$\mathcal{R}_{D\pi} = [3.28^{+0.38}_{-0.36}(\text{stat})^{+0.12}_{-0.18}(\text{syst})] \times 10^{-3}$$

$$\mathcal{A}_{D\pi} = -0.04 \pm 0.11(\text{stat})^{+0.02}_{-0.01}(\text{syst})$$

$B \rightarrow D_{DCS} K$ reconstruction

~ 56 B \rightarrow D_{DCS}K events, Evidence of B \rightarrow D_{DCS}K, with a significance of 4.1 σ

$$\mathcal{R}_{DK} = [1.63^{+0.44}_{-0.41}(\text{stat})^{+0.07}_{-0.13}(\text{syst})] \times 10^{-2}$$

$$\mathcal{A}_{DK} = -0.39^{+0.26}_{-0.28}(\text{stat})^{+0.04}_{-0.03}(\text{syst})$$

ADS method at CDF

First measurement of A_{ADS} and R_{ADS} at a hadron collider

The CDF II detector

TRACKING system:

- DRIFT CHAMBER 96 layers ($|\eta|$ <1)
 - \rightarrow 1.5 σ π/K separation by dE/dx
- · SILICON TRACKER
- 7 layers (1.5-22cm from beam pipe)
- \rightarrow I.P. resolution 35 μ m at 2 GeV
- $\rightarrow \sigma(p_T)/p_T^2 \sim 0.015\% (c/GeV)$

TRACKING TRIGGER system:

- Chamber track processor at L1, 2D tracks in COT, $p_T > 1.5$ GeV
- Silicon Vertex Trigger at L2,
 2D tracks p_T > 2 GeV,
 Impact Parameter measurement (trigger on events containing long lived particles)

CF and DCS samples ($L = 5fb^{-1}$)

$$B^- \rightarrow D^0_{CF} \pi^- \rightarrow [K^- \pi^+] \pi^-$$

$$B^- \rightarrow D^0_{DCS} \pi^- \rightarrow [K^+ \pi^-] \pi^-$$

Cuts optimization

Crucial step toward the DCS modes

- We directly used the CF sample (not MC) selecting the signal (S) in \pm 2 σ of B \rightarrow D π peak and the background (B) in [5.4,5.8] range
- We maximized the quantity

$$\frac{S}{1.5 + \sqrt{B}}$$

Optimized selection

<u>D⁰ candidate</u>

Cuts on:

- the invariant mass
- angular distribution
- the decay length wrt B to remove $B\rightarrow 3$ body decays
- particle identification of tracks from D^0 to remove $D^0\!\!\to\!\!\pi\pi$ events

Optimized selection

B candidate

Cuts on:

- decay length wrt primary vertex
- impact parameter
- · angle between momentum and decay length

Optimized selection

<u>B candidate</u>

Cuts on:

- decay length wrt primary vertex
- impact parameter
- angle between momentum and decay length

isolation

$$I(B) = \frac{p_T(B)}{p_T(B) + \sum_i p_T(i)}$$

- 3D vertex quality, obtained with the 3D silicon-tracking, to:
 - resolve multiple vertices along the beam direction
 - · reject fake tracks.

Backg. reduces x2, small inefficiency on signal (<10%).

CF and DCS after cut optimization

$$B^- \rightarrow D^0_{CF} \pi^- \rightarrow [K^- \pi^+] \pi^-$$

$$B^- \rightarrow D^0_{DCS} \pi^- \rightarrow [K^+ \pi^-] \pi^-$$

The combinatorial background is almost reduced to zero and an excess of events appears in the signal region of the DCS sample.

Kππ mass [GeV/c²]

Fit procedure

Use of an unbinned maximum likelihood fit (combined on CF and DCS modes) to separate signals contribution.

$$\mathcal{L} = \prod_{k}^{Nevents} [f_{sig}\mathcal{F}_{sig} + (1 - f_{sig}) \cdot \mathcal{F}_{back}]$$

$$\mathcal{F}_{sig}$$
 = sum of B⁻ \rightarrow D° π ⁻, B⁻ \rightarrow D*° π ⁻ and B⁻ \rightarrow D° K⁻ likelihood

 \mathcal{F}_{back} = sum of combinatorial and physics background likelihood

We used:

- mass information
- particle identification (dE/dx with K- π separation: 1.5 σ for p > 2 GeV/c)

Common parameters between CF and DCS:

- ratio between N(B⁻ \rightarrow D*0 π ⁻)/ N(B⁻ \rightarrow D⁰ π ⁻)
- combinatorial background pdf

Results: CF reconstruction

$$B^{\scriptscriptstyle +} \rightarrow \overline{D}{}^{\scriptscriptstyle 0}{}_{\mathcal{C}F} \, \pi^{\scriptscriptstyle +} \rightarrow [K^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +}] \, \pi^{\scriptscriptstyle +}$$

$$B^- \rightarrow D^0_{CF} \pi^- \rightarrow [K^+ \pi^-] \pi^-$$

Yield (B
$$\rightarrow$$
 D_{CF}K) = 1513 \pm 68 (5 fb⁻¹)
Yield (B \rightarrow D_{CF} π) = 17677 \pm 146 (5 fb⁻¹)

Results: DCS reconstruction

First reconstruction of DCS signals at a hadron collider.

$$B^- \rightarrow D^0_{DCS} \pi^- \rightarrow [K^+ \pi^-] \pi^-$$

Yield (B
$$\rightarrow$$
 D_{DCS}K) = 34 ± 14 (5 fb⁻¹)
Yield (B \rightarrow D_{DCS} π) = 73 ± 16 (5 fb⁻¹)

Significance for all DCS signals
$$(D_{DCS}\pi + D_{DCS}K) > 5 \sigma$$

Results: physics background

Physics background for DCS:

Decay	Yield	
$B^- \rightarrow D^{0*} \pi^-, D^{0*} \rightarrow D^0 \gamma / \pi^0$	3 ± 3	
$B^- \rightarrow D^0 \pi^-, D^0 \rightarrow X$	90 ± 13	
$B^- \rightarrow D^0 K^-, D^0 \rightarrow X$	4 ± 3	
B⁻→K⁻π⁺ π⁻	18 ± 4	
B ⁰ →D ₀ *- e+ v _e	4 ± 3	

$$B^{\scriptscriptstyle +} \rightarrow \overline{D}{}^{\scriptscriptstyle 0}{}_{\scriptscriptstyle DCS} \, \pi^{\scriptscriptstyle +} \rightarrow [K^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +}] \, \pi^{\scriptscriptstyle +}$$

$B^- \rightarrow D^0_{DCS} \pi^- \rightarrow [K^+ \pi^-] \pi^-$

Results: the observables

First measurement of A_{ADS} and R_{ADS} at a hadron collider.

$$R_{ADS}(\pi) = 0.0041 \pm 0.0008(stat) \pm 0.0004(syst)$$

$$A_{ADS}(\pi) = 0.22 \pm 0.18(stat) \pm 0.06(syst)$$

$$R_{ADS}(K) = 0.0225 \pm 0.0084(stat) \pm 0.0079(syst)$$

$$A_{ADS}(K) = -0.63 \pm 0.40(stat) \pm 0.23(syst)$$

(CDF public note 10309)

Summary of results

The results are in agreement and compatible with B-factories

CDF program on γ

The ADS measurement belongs to a broader program of CDF for measuring γ from trees.

Recently published the **GLW measurement** using 1 fb⁻¹ of data (*Phys.Rev.D81:031105,2010*)

The GLW method

- Direct CP violation in B \rightarrow D_{CP}K modes (D_{CP+} \rightarrow π^+ π^- , K⁺ K⁻ and D_{CP-} \rightarrow K⁰_s π^0 , K⁰_s ω , K⁰_s ϕ .)
- very clean method
- small asymmetry, sensitivity to γ proportional to r_B

The observables

$$R_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{[\Gamma(B^- \to D^0 K^-) + \Gamma(B^+ \to D^0 K^+)]/2}$$

$$A_{CP^{\pm}} = \frac{\Gamma(B^{-} \to D_{CP^{\pm}}^{0} K^{-}) - \Gamma(B^{+} \to D_{CP^{\pm}}^{0} K^{+})}{\Gamma(B^{-} \to D_{CP^{\pm}}^{0} K^{-}) + \Gamma(B^{+} \to D_{CP^{\pm}}^{0} K^{+})}$$

From theory:

$$R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$$

 $A_{CP\pm} = 2r_B \sin \delta_B \sin \gamma / R_{CP\pm}$

3 independent equations
$$(A_{CP+}R_{CP+} = -A_{CP-}R_{CP-})_{4}$$
 and 3 unknowns (r_B, γ, δ_B)

CP+ modes results

D mode $B^+ \to D\pi^+ \ B^- \to D\pi^- \ B^+ \to DK^+ \ B^- \to DK^-$					
$K^-\pi^+$	3769 ± 68	3763 ± 68	250 ± 26	266 ± 27	
K^+K^-	381 ± 25	399 ± 26	22 ± 8	49 ± 11	
$\pi^+\pi^-$	101 ± 13	117 ± 14	6 ± 6	14 ± 6	

Yield (B \rightarrow D_{CP+}K) \sim 90 (1 fb⁻¹)

$B \rightarrow DK$ A_{CP+} Averages

HFAG ICHEP 2010 PRELIMINARY

	BaBar arXiv:1007.0504		0.25 ± 0.06 ± 0.02
×	Belle PRD 73, 051106 (2006)	+	0.06 ± 0.14 ± 0.05
ا م	CDF PRD 81, 031105(R) (2010)		0.39 ± 0.17 ± 0.04
	Average HFAG		0.24 ± 0.06

$B \rightarrow DK$ R_{CP+} Averages

	BaBar arXiv:1007.0504	$1.18 \pm 0.09 \pm 0.05$
¥	Belle PRD:73, 051106 (2006)	$1.13 \pm 0.16 \pm 0.08$
٥٥	CDF PRD 81, 031105(R) (2010)	1.30 ± 0.24 ± 0.12
	Average HFAG	1.18 ± 0.08

Conclusions

- · CDF performed:
 - first measurement of A_{ADS} and R_{ADS} at a hadron collider using 5 fb⁻¹.
 - Significance of DCS signals (D_{DCS} π + D_{DCS} K) > 5σ
 - first measurement of A_{CP+} and R_{CP+} at a hadron collider using 1 fb⁻¹.
- Not only demonstrated the capability of hadron collider with B to charm decays, but we even get competitive results with B-factories
- In a few months we will have a doubled dataset.

BACK-UP

The Tevatron

Good performances on Run II:

- peak $L_{inst} = 3.5-4 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
- · delivering 2.5 fb-1/year

Tevatron is great for rare B decay searches:

- Large b production cross section
 (x1000 times larger than e⁺e⁻ B factories)
- All B species are produced (B⁰, B⁺, B_s, Λ_{b} ...)

The Tevatron

Good performances on Run II:

- $L_{inst} = 3.5-4 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
- delivering 2.5 fb⁻¹/year

Tevatron is great for rare B decay searches:

- Large b production cross section
 (x1000 times larger than e⁺e⁻ B factories)
- All B species are produced (B⁰, B⁺, B_s, Λ_{b} ...)

But:

- The **total** inelastic **x-section** is a factor **10**³ larger than $\sigma(b\overline{b})$
- The BRs of rare b-hadron decays are O(10-6) or lower

Interesting events must be extracted from a high track multiplicity environment

Detectors need to have:

· Very good tracking and vertex resolution and highly selective trigger

Separating DK from other modes

5.2

5.3

To reject most of the physical backgrounds, narrow fit windows [5.17,6.5]

The only significant physics backgrounds are $B^- \rightarrow D^0 (\tau^-)$ and $B^- \rightarrow D^{0*} (\tau^-)$ 30

Separation by Particle ID

Implementation of a Likelihood FIT using masses and particle identification (dE/dx) information to determine the signal composition

K - π separation: 1.5 σ for p > 2 GeV/c

ADS: Systematics

Source	$R_{ADS}(\pi)$	$R_{ADS}(K)$	$A_{ADS}(\pi)$	$A_{ADS}(K)$
dE/dx	0.0001	0.0050	0.0560	0.070
combinatorial background	0.0003	0.0037	0.0073	0.153
$B^- \to [X]_D \pi^-$ shape	0.0002	0.0025	0.0067	0.057
$B^- \to [X]_D K^-$ shape	-	0.0001	0.0003	0.003
$B^- \to K^- \pi^+ \pi^- \text{ shape}$	0.0001	0.0004	0.0049	0.009
$B^0 \to D_0^{*-} e^+ \nu_e$ shape	-	0.0003	0.0020	0.007
$B^- \to D^{*0} \pi^- \text{ shape}$	-	0.0005	0.0009	0.013
efficiency	-	0.0001	7_	0.003
bias	0.0001	0.0042	0.0159	0.148
Total	0.0004	0.0079	0.059	0.232

- dE/dx we varied the shapes of the PID pdfs
- Combinatorial and physics background: we varied the shapes used in the fit
- efficiency of K+/K- reconstruction
- Fit bias: checked with pseudo-experiments MC

ADS: Likelihood

$$\mathcal{L} = \mathcal{L}_{CF+} \cdot \mathcal{L}_{CF-} \cdot \mathcal{L}_{DCS+} \cdot \mathcal{L}_{DCS-}$$

$$\mathcal{L}_{CF+} = \prod_{i}^{Nevents} \left[(1 - b_{CF+}) \cdot \left(f_{\pi}^{CF+} \cdot pdf_{\pi}(M, ID) + \mathbf{c}^{+} \cdot f_{\pi}^{CF+} \cdot pdf_{D*}(M, ID) + \mathbf{c}^{+} \cdot f_{\pi}^{CF+} \cdot pdf_{D*}(M, ID) + \left(1 - f_{\pi}^{CF+} - \mathbf{c}^{+} \cdot f_{\pi}^{CF+} \right) \cdot pdf_{K}(M, ID) \right] + b_{CF+} \cdot pdf_{comb}(M, ID) \right]$$

$$\mathcal{L}_{DCS+} = \prod_{i}^{Nevents} \left[(1 - b_{DCS+}) \cdot \left(f_{\pi}^{DCS+} \cdot pdf_{\pi}(M, ID) + \mathbf{c}^{+} \cdot f_{\pi}^{DCS+} \cdot pdf_{D*}(M, ID) + \right. \right. \\ + \left. \left(1 - f_{\pi}^{DCS+} - \mathbf{c}^{+} \cdot f_{\pi}^{DCS+} \right) \cdot pdf_{K}(M, ID) \right) + \\ + b_{DCS+} \cdot \left(f_{[X]\pi}^{+} \cdot pdf_{[X]\pi}(M, ID) + f_{[X]K}^{+} \cdot pdf_{[X]K} + f_{K\pi\pi}^{+} \cdot pdf_{K\pi\pi}(M, ID) + \right. \\ \left. f_{B^{0}}^{+} \cdot pdf_{B^{0}}(M, ID) + (1 - f_{[X]\pi}^{+} - f_{[X]K}^{+} - f_{K\pi\pi}^{+} - f_{B^{0}}^{+}) \cdot pdf_{comb}(M, ID) \right) \right]$$

- $pdf_i(M,ID) = pdf_i(M) * pdf_i(ID)$
- Fitted parameters
 - b cf. DCs = background fraction for CF and DCS
 - $f_{\pi, CF, DCS}$ = B->D⁰ π fraction for CF and DCS signal
 - $c = f_{D^*}/f_{\pi}$ (equal for CF and DCS)
 - $f_{[X]\pi}$ = fraction of B->D⁰ π , D⁰->X in DCS reconstruction (constrained from MC)
 - $f_{[X]K}$ = fraction of B->D⁰K, D⁰->X in DCS reconstruction (constrained from MC)
 - $f_{K\pi\pi}$ = fraction of B->K- π + π in DCS reconstruction (constrained from MC)
 - f_{BO} = fraction of B^0 ->D*- e v in DCS reconstruction (constrained from MC)

Analogous expressions for negative charges